A volume integral implementation of the Goldstein generalised acoustic analogy for unsteady flow simulations.

A multi-resolution particle/fluctuating hydrodynamics model for hybrid simulations of liquids based on the two-phase flow analogy.

CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect.
Markesteijn AP and Karabasov SA. *Comptes Rendus - Mecanique*.

2017

Complete virus capsid at all-atom resolution: Simulations using molecular dynamics and hybrid molecular dynamics/hydrodynamics methods reveal semipermeable membrane function.

Helicopter noise in hover: Computational modelling and experimental validation.

Similarity scaling of jet noise sources for low-order jet noise modelling based on the Goldstein generalised acoustic analogy.

Aerofoil broadband and tonal noise modelling using stochastic sound sources and incorporated large scale fluctuations.

Flux-corrected dispersion-improved CABARET schemes for linear and nonlinear wave propagation problems.
Chintagunta A, Naghibi SE and Karabasov SA. *Computers and Fluids*.

Broad band shock associated noise predictions in axisymmetric and asymmetric jets using an improved turbulence scale model.

Excitation of the Earth’s Chandler wobble by a turbulent oceanic double-gyre.

2016

Two-phase flow analogy as an effective boundary condition for modelling liquids at atomistic resolution.
Jet and jet-wing noise modelling based on the CABARET MILES flow solver and the Ffowcs Williams-Hawkings method.

Fluid film break-up modeling using adaptive mesh refinement models.
Sipatov AM, Karabasov SA, Gomzikov LY, Abramchuk TV and Semakov GN. *Russian Aeronautics* vol. 59, (3) 381-387.

2015

Influence of free stream effects on jet noise generation and propagation within the Goldstein acoustic analogy approach for fully turbulent jet inflow boundary conditions.
Karabasov SA and Sandberg RD. *International Journal of Aeroacoustics* vol. 14, (3-4) 413-430.

A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time.

Multiscale molecular dynamics/hydrodynamics implementation of two dimensional "Mercedes Benz" water model.

Acoustic sources and far-field noise of chevron and round jets.

2014

A new non-linear two-time-level Central Leapfrog scheme in staggered conservation-flux variables for fluctuating hydrodynamics equations with GPU implementation.

Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids.

Multiscale modelling: Approaches and challenges.

CABARET scheme for computational aero acoustics: Extension to asynchronous time stepping and 3D flow modelling.

Acoustic wave focusing by non-uniform mean flow in a rectangular duct with viscous walls.

Time asynchronous relative dimension in space method for multi-scale problems in fluid dynamics.
Markesteijn AP and Karabasov SA. *Journal of Computational Physics* vol. 258, 137-164.

New two-level leapfrog scheme for modeling the stochastic Landau-Lifshitz equations.
Glotov VY, Goloviznin VM, Karabasov SA and Markesteijn AP. *Computational Mathematics and Mathematical Physics* vol. 54, (2) 315-334.

Jet-wing interaction: Computational modelling based on MILES CABARET and acoustic analogy.
Semiletov VA, Karabasov SA, Faranosov GA, Kopiev VF and Goloviznin VM. *20th Aiaa/Ceas Aeroacoustics Conference*.
Adjoint linearised euler solver and source modelling for goldstein acoustic analogy equations for 3D jet flow problems: Verification and capability study.
Semiletov VA and Karabasov SA. *20th Aiaa/Ceas Aeroacoustics Conference*.

Structural optimization of the air-blast atomizer based on three-dimensional simulation techniques.
Sipatov AM, Karabasov SA, Gomzikov LY, Abramchuk TV and Semakov GN. *Russian Aeronautics* vol. 57, (1) 75-83.

Visualising and controlling the flow in biomolecular systems at and between multiple scales: from atoms to hydrodynamics at different locations in time and space.

Generalization of the CABARET scheme to two-dimensional orthogonal computational grids.
Goloviznin VM, Karabasov SA and Kondakov VG. *Mathematical Models and Computer Simulations* vol. 6, (1) 56-79.

2013

CABARET method on unstructured hexahedral grids for jet noise computation.

CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems.

On the effect of Mach number on subsonic jet noise sources in the Goldstein acoustic analogy model.
Kondakov VG, Karabasov SA and Goloviznin VM. *19th Aiaa/Ceas Aeroacoustics Conference*.

On the effect of flap deflection on jet flow for a jet-pylon-wing configuration: Near-field and acoustic modelling results.

3D frequency-domain linearised Euler solver based on the Goldstein acoustic analogy equations for the study of non-uniform mean flow propagation effects.
Semiletov VA and Karabasov SA. *19th Aiaa/Ceas Aeroacoustics Conference*.

Application of azimuthal decomposition technique for validation of CAA methods.
Faranosov GA, Kopiev VF and Karabasov SA. *19th Aiaa/Ceas Aeroacoustics Conference*.

Airfoil flow and noise computation using monotonically integrated large eddy simulation and acoustic analogy: Effect of the grid resolution.

Water-peptide dynamics during conformational transitions.

An investigation of the mechanisms of sound generation in initially laminar subsonic jets using the Goldstein acoustic analogy.

2012

Airfoil flow and noise computation using monotonically integrated LES and acoustic analogy.
Semiletov VA, Karabasov SA, Faranosov GA and Zaitsev MA. *18th Aiaa/Ceas Aeroacoustics Conference* (33rd Aiaa Aeroacoustics Conference).

Reduced-order jet noise modelling for chevrons.

CABARET method on unstructured hexahedral grids for jet noise computation.
On the effect of Mach number and coflow for turbulent jet noise sources.
Karabasov SA and Sandberg RD. *18th Aiaa/Ceas Aeroacoustics Conference (33rd Aiaa Aeroacoustics Conference).*

Acoustic wave focusing by non-uniform mean flow in a rectangular duct with viscous walls.
Markesteyn AP and Karabasov SA. *18th Aiaa/Ceas Aeroacoustics Conference (33rd Aiaa Aeroacoustics Conference).*

Direct modeling of the interaction between vortex pairs.

2011

Computation of the noise of initially laminar jets using a statistical approach for the acoustic analogy: Application and discussion.
Karabasov SA, Bogey C and Hynes T. *17th Aiaa/Ceas Aeroacoustics Conference 2011 (32nd Aiaa Aeroacoustics Conference).*

On the acoustic super-directivity of jittering vortex systems for the study of jet noise.
Yakovlev PG, Karabasov SA and Goloviznin VM. *17th Aiaa/Ceas Aeroacoustics Conference 2011 (32nd Aiaa Aeroacoustics Conference).*

On latency of multiple zonal jets in the oceans.

On the power of second-order accurate numerical methods for model problems of gas- and hydrodynamics.

2010

Once again on the importance of propagation effects for jet noise modelling.
Karabasov SA. *16th Aiaa/Ceas Aeroacoustics Conference (31st Aiaa Aeroacoustics Conference).*

Understanding jet noise.

Jet noise: Acoustic analogy informed by large eddy simulation.

Low-order modelling for chevron jet noise based on LES data.
Karabasov SA, Xia H, Graham O, Hynes TP, Tucker PG and Dowling AP. *16th Aiaa/Ceas Aeroacoustics Conference (31st Aiaa Aeroacoustics Conference).*

2009

Unstructured grid solution approach for eikonal equation with acoustics in mind.

On a classical problem of acoustic wave scattering by a free vortex: Numerical modelling.
Karabasov SA, Kopiev VF and Goloviznin VM. *15th Aiaa/Ceas Aeroacoustics Conference (30th Aiaa Aeroacoustics Conference).*

CABARET scheme for the numerical solution of aeroacoustics problems: Generalization to linearized one-dimensional Euler equations.

High-resolution cabaret scheme for sound scattering problems.
Compact Accurately Boundary-Adjusting high-REsolution Technique for fluid dynamics.
Karabasov SA and Goloviznin VM. *Journal of Computational Physics* vol. 228, (19) 7426-7451.

CABARET in the ocean gyres.
Karabasov SA, Berloff PS and Goloviznin VM. *Ocean Modelling* vol. 30, (2-3) 155-168.

Unstructured grid solution of the eikonal equation for acoustics.

2008

Contrasting high-resolution characteristic shock-capturing methods in aeroacoustic test problems.
Karabasov SA and Goloviznin VM. *14th Aiaa/Ceas Aeroacoustics Conference* (29th Aiaa Aeroacoustics Conference).

Using large eddy simulation within an acoustic analogy approach for jet noise modelling.

2007

New efficient high-resolution method for nonlinear problems in aeroacoustics.

Jet noise in the 'zone of silence'.

Effect of mean-flow evolution on sound propagation through non-uniform jet flows.

A novel computational method for modelling stochastic advection in heterogeneous media.

2006

Adjoint linearised Euler solver in the frequency domain for jet noise modelling.
Karabasov SA and Hynes TP. *Collection of Technical Papers - 12th Aiaa/Ceas Aeroacoustics Conference* vol. 6, 3550-3563.

Comparison of jet noise models.

A new high-resolution balance-characteristic method for aeroacoustics.
Karabasov SA, Goloviznin VM, Kozubskaya TK and Abalakin IV. *Collection of Technical Papers - 12th Aiaa/Ceas Aeroacoustics Conference* vol. 1, 190-204.

A method for solving compressible flow equations in an unsteady free stream.

2005

An efficient frequency-domain algorithm for wave scattering problems with application to jet noise.

Transonic helicopter noise.
2004

A method for solving compressible flow equations in unsteady free stream.

2003

Low order models for blade response to vorticity gusts in bounded systems.
Morgans AS, Karabasov SA, Dowling AP and Hynes TP. *9th Aiaa/Ceas Aeroacoustics Conference and Exhibit*.

2002

Open boundary conditions of predictor-corrector type for external flows.
Karabasov SA and Hynes TP. *8th Aiaa/Ceas Aeroacoustics Conference and Exhibit*.

2001

Cabaret finite-difference schemes for the one-dimensional euler equations.
Goloviznin VM, Hynes TP and Karabasov SA. *Mathematical Modelling and Analysis vol. 6*, (2) 210-220.