2018

Guided Cell Attachment via Aligned Electrospinning of Glycopolymers.
Liu R, Becer CR and Screen HRC. Macromolecular Bioscience vol. 18, (12).

Tendon Pathology: Have we missed the first step in the development of pathology?.

Magnetic resonance elastography in nonlinear viscoelastic materials under load.

Mechanical loading induces primary cilia disassembly in tendon cells via TGF? and HDAC6.
Rowson DT, Shelton JC, Screen HRC and Knight MM. Sci Rep vol. 8, (1).

Effects of cell adhesion motif, fiber stiffness, and cyclic strain on tenocyte gene expression in a tendon mimetic fiber composite hydrogel.

Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM).

2017

Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing.
. Scientific Reports vol. 7, (1).

The relative compliance of energy-storing tendons may be due to the helical fibril arrangement of their fascicles.

Fascicles and the interfascicular matrix show decreased fatigue life with ageing in energy storing tendons.
Thorpe CT, Riley GP, Birch HL, Clegg PD and Screen HRC. Acta Biomaterialia vol. 56, 58-64.

A2B-Miktoarm Glycopolymer Fibers and Their Interactions with Tenocytes.

Recapitulating the Micromechanical Behavior of Tension and Shear in a Biomimetic Hydrogel for Controlling Tenocyte Response.

Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification.
A transverse isotropic viscoelastic constitutive model for aortic valve tissue.

Structural building blocks of soft tissues: Tendons and heart valves.
Gupta HS and SCREEN HRC. *Cism International Centre For Mechanical Sciences, Courses and Lectures.*

2016

Elastin is more abundant in energy storing tendons and is localised to the tendon interfascicular matrix.

Fascicles and the interfascicular matrix show adaptation for fatigue resistance in energy storing tendons.
Thorpe CT, Riley GP, Birch HL, Clegg PD and Screen HRC. *Acta Biomater* vol. 42, 308-315.

Nomenclature of the tendon hierarchy: An overview of inconsistent terminology and a proposed size-based naming scheme with terminology for multi-muscle tendons.
Handsfield GG, Slane LC and Screen HRC. *J Biomech* vol. 49, (13) 3122-3124.

The Effect of Gradations in Mineral Content, Matrix Alignment, and Applied Strain on Human Mesenchymal Stem Cell Morphology within Collagen Biomaterials.
Mozdzen LC, Thorpe SD, Screen HRC and Harley BAC. *Advanced Healthcare Materials* vol. 5, (14) 1731-1739.

Distribution of proteins within different compartments of tendon varies according to tendon type.
Thorpe CT, Karunasenan KJ, Ng Chieng Hin J, Riley GP, Birch HL, Clegg PD and Screen HRC. *Journal of Anatomy* vol. 229, (3) 450-458.

Zonal variation in primary cilia elongation correlates with localized biomechanical degradation in stress deprived tendon.
Rowson D, Knight MM and Screen HRC. *J Orthop Res* vol. 34, (12) 2146-2153.

The use of medical infrared thermography in the detection of tendinopathy: a systematic review.

Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition.
Thorpe CT, Peffers MJ, Simpson D, Halliwell E, Screen HRC and Clegg PD. *Sci Rep* vol. 6.,

Tendon Structure and Composition.

2015

The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.
Thorpe CT, Godinho MSC, Riley GP, Birch HL, Clegg PD and Screen HRC. *J Mech Behav Biomed Mater* vol. 52, 85-94.

Tendon overload results in alterations in cell shape and increased markers of inflammation and matrix degradation.

Cancer classification using a novel gene selection approach by means of shuffling based on data clustering with optimization.

Tendon extracellular matrix damage, degradation and inflammation in response to in vitro overload exercise.
Tendon functional extracellular matrix.

In vivo biological response to extracorporeal shockwave therapy in human tendinopathy.

Eccentric and concentric loading of the triceps surae: an in vivo study of dynamic muscle and tendon biomechanical parameters.
Chaudhry S, Morrissey D, Woledge RC, Bader DL and Screen HRC. *J Appl Biomech* vol. 31, (2) 69-78.

Eccentric and concentric exercise of the triceps surae: an in vivo study of dynamic muscle and tendon biomechanical parameters.

Chaudhry S, Morrissey D, Woledge RC, Bader DL and Screen HRC. *J Appl Biomech* vol. 31, (2) 69-78.

The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review.

Science in brief: recent advances into understanding tendon function and injury risk.
Thorpe CT, Spiesz EM, Chaudhry S, Screen HRC and Clegg PD. *Equine Vet J* vol. 47, (2) 137-140.

Thorpe CT, Birch HL, Clegg PD and Screen HRC. *Tendon Regeneration: Understanding Tissue Physiology and Development to Engineer Functional Substitutes*. 2014

Early stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level.

Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation.

Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons.
Thorpe CT, Riley GP, Birch HL, Clegg PD and Screen HRC. *Acta Biomater* vol. 10, (7) 3217-3224.

The effects of extracorporeal shockwave therapy on matrix metalloprotease activity in tendinopathy.

Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading.

Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour.

2013

Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return.
Thorpe CT, Klemt C, Riley GP, Birch HL, Clegg PD and Screen HRC. *Acta Biomater* vol. 9, (8) 7948-7956.
The role of the non-collagenous matrix in tendon function.

Fatigue loading of tendon.

GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery.
Legerlotz K, Riley GP and Screen HRC. *Acta Biomater* vol. 9, (6) 6860-6866.

Response to letter to the editor: End effects in mechanical testing of biomaterials.
Journal of Biomechanics vol. 46, (5).

Cyclic loading of tendon fascicles using a novel fatigue loading system increases interleukin-6 expression by tenocytes.

Capacity for sliding between tendon fascicles decreases with ageing in injury prone equine tendons: a possible mechanism for age-related tendinopathy?.
Thorpe CT, Udeze CP, Birch HL, Clegg PD and Screen HR. *Eur Cell Mater* vol. 25, 48-60.

Microstructural stress relaxation mechanics in functionally different tendons.

Microstructural stress relaxation mechanics in functionally different tendons.
Medical Engineering and Physics vol. 35, (1) 96-102.

Response to letter to the editor: End effects in mechanical testing of biomaterials.
Anssari-Benam A, Legerlotz K, Bader DL and Screen HRC. *Journal of Biomechanics*.

Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return.

2012

Specialization of tendon mechanical properties results from interfascicular differences.
Thorpe CT, Udeze CP, Birch HL, Clegg PD and Screen HRC. *Journal of The Royal Society Interface* vol. 9, (76) 3108-3117.

On the specimen length dependency of tensile mechanical properties in soft tissues: gripping effects and the characteristic decay length.

Increased expression of IL-6 family members in tendon pathology.
Legerlotz K, Jones ER, Screen HRC and Riley GP. *Rheumatology* vol. 51, (7) 1161-1165.

Strain transfer through the aortic valve.

Coronal plane hip muscle activation in football code athletes with chronic adductor groin strain injury during standing hip flexion.

2011

Extrafibrillar diffusion and intrafibrillar swelling at the nanoscale are associated with stress relaxation in the soft collagenous matrix tissue of tendons.
Soft Matter vol. 7, (23) 11243-11251.

Nonlinearities in soft tissue strain.
Anisotropic time-dependant behaviour of the aortic valve.

Anisotropic strain transfer through the aortic valve and its relevance to the cellular mechanical environment.

The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.

A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation.

Anisotropic strain transfer through the aortic valve and its relevance to the cellular mechanical environment.

2010

Specimen dimensions influence the measurement of material properties in tendon fascicles.
Journal of Biomechanics vol. 43, (12) 2274-2280.

Characterization of a novel fiber composite material for mechanotransduction research of fibrous connective tissues.

In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen.
Journal of Structural Biology vol. 169, (2) 183-191.

2009

Measuring strain distributions in the tendon using confocal microscopy and finite elements.
Screen HRC and Evans SL. J Strain Anal Eng vol. 44, (5) 327-335.

Hierarchical approaches to understanding tendon mechanics.

2008

Characterizing structure-function relationships in tendon.
8th World Biomaterials Congress 2008 vol. 2.

Investigating load relaxation mechanics in tendon.

2007

The micro-structural strain response of tendon.

Strain mechanisms in tendon fascicles.
SCREEN HRC and Cheng VWT. J.Mat.Sci. vol. 21, 8957-8965.

2006

The influence of swelling and matrix degradation on the microstructural integrity of tendon.

2005

Cyclic mechanical conditioning of isolated tendon fascicles results in an upregulation of collagen production.
Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles.

The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles.

British society for matrix biology autumn meeting.

2004

Local Strain Measurement within Tendon.

An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties.

2003

Development of a technique to determine strains in tendons using the cell nuclei.

2002

Development of a technique to determine strains in tendons using the cell nuclei.

Non-collagenous matrix components influence the micromechanical environment of tenocytes within tendon fascicles subjected to tensile strain.
Bader DL, Shelton JC, Lee DA and SCREEN HRC. Eur. Cells Mat. vol. 4:S1, 41-42.

Non-collagenous matrix components influence the micro-mechanical environment of tenocytes within tendon fascicles subjected to tensile strain.