Low Reynolds number proprotor aerodynamic performance improvement using the continuous surface curvature design approach.

NASAL INTERNAL AND EXTERNAL AERODYNAMICS FOR HEALTHY AND BLOCKED CAVITIES.

An experimental study on the influence of vortex generators on the shock-induced boundary layer separation at M=1.4.

Effect of submerged vortex generators on shock-induced separation in transonic flow.
Shahneh AZ and Motallebi F. Journal of Aircraft vol. 46, (3) 856-863.

Introduction to the Queen Mary College 100th anniversary of teaching aeronautics special issue of The Aeronautical Journal.
Motallebi F. Aeronaut J vol. 112, (1133) IV-IV.

Influence of the height of the vortex generators in the control of shock-induced separation of the boundary layers.

Sub boundary-layer vortex generators for the control of shock induced separation.

Advanced bobsleigh design. Part 2: aerodynamic modifications to a two-man bobsleigh.
Motallebi F, Dabnichki P and Luck D. P I Mech Eng L-J Mat vol. 218, (L2) 139-144.

Dabnichki P, Motallebi F and Avital E. P I Mech Eng L-J Mat vol. 218, (L2) 129-137.
2002

Effect of Rapid Acceleration on Supersonic Turbulent Boundary Layers.

2001

Influence of boundary-layer thickness on base pressure and vortex shedding frequency.

2000

Some observations on the relaminarisation of a supersonic turbulent boundary layer.
Cohen GS, Motallebi F and Horton HP. *Aeronaut J vol. 104, (1041) 557-559.*

1996

Reynolds number effects on the prediction of velocity profile in compressible flows.
Motallebi F. *Aiaa J vol. 34, (4) 870-873.*

Reynolds number effects on the prediction of mean flow data for adiabatic 2-D compressible boundary layers.
Motallebi F. *Aeronaut J vol. 100, (992) 53-59.*

1994

MEAN FLOW STUDY OF 2-DIMENSIONAL SUBSONIC TURBULENT BOUNDARY-LAYERS.
MOTALLEBI F. *Aiaa J vol. 32, (11) 2153-2161.*

SKIN FRICTION AND VELOCITY PROFILE FAMILY FOR COMPRESSIBLE TURBULENT BOUNDARY-LAYERS - COMMENT.
MOTALLEBI F. *Aiaa J vol. 32, (9) 1938-1938.*

A REVIEW OF THE HOT-WIRE TECHNIQUE IN 2-D COMPRESSIBLE FLOWS.
MOTALLEBI F. *Prog Aerosp Sci vol. 30, (3) 267-294.*